Beamline 14-ID / BioCARS-CAT

Scientific focus: Structural biology

Scientific programs: Large unit cell (virus) crystallography, small unit cell (protein) crystallography, MAD phasing, time-resolved crystallography, Laue diffraction, and study of microcrystals

Optics & Optical Performance

- slits
- power filters
- CARS-design diamond(111) monochromator 28.013 m from source double bounce 6.5–18.5 energy range <10⁻⁴ energy resolution (ΔΕ/Ε) at 10 keV 38 mm offset (fixed-exit, down bounce) water cooled
- CARS design cylindrical focusing mirror
 29.870 m from source
 Si substrate, Rh coating
 water cooling at midplane
 4.1 mrad design angle
 horizontal focus: sagittal cylindrical figure
 vertical focus: bender

Experiment Stations 14-ID-A

- white beam first optics enclosure
- 10.5 m x 1.7 m x 2.8 m (L x W x H)

14-ID-B

- white, pink, or monochromatic beam station
- 4.5 m x 2.6 m x 2.8 m (L x W x H)
- MAD phasing
- microcrystallography
- virus/protein crystallography
- Laue crystallography
- time-resolved crystallography

Detectors

• ADSC Q4, MAR345 and off-line image plate detectors

Beamline Controls and Data Acquisition

- beamline and experiment control:
 Dell Precision 620/PIII 933
 Red Hat Linux 7.1
 EPICS via VME
 ADSC or Mar control software
- analysis: SGI 02 IRIX 6.5 running HKL/Denzo, DPS/MOSFILM, CCP4, CNS, LaueView, O, Predict, Resolve, Shelx, Strategy, Solve, XtalView, etc.

Beamline Support Equipment/Facilities

- cryo-coolers: Oxford CryoJet and CARS liquidnitrogen/liquid-helium cooler
- collimators, filters, slits, beam-stop, CCD alignment cameras
- beam position monitors (1 μm resolution)
- beam flux monitors
- BL3 facility, sample-prep areas, cold room
- biochemistry equipment (pH meters, incubator, centrifuge, pipettes, glassware, lab refrigerator, etc.)

Beamline 14-ID / BioCARS-CAT

Scientific focus: Structural biology

Scientific programs: Large unit cell (virus) crystallography, small unit cell (protein) crystallography, MAD phasing, time-resolved crystallography, Laue diffraction, and study of microcrystals

Insertion Device Source Characteristics (nominal)

source 1	wiggler A
period	8.50 cm
length	2.4 m
peak K _{max} (at minimum gap = 18.1 mm)	8.74
critical energy (at minimum gap = 18.1 mm)	$35.9~{ m keV}$
energy range (wiggler mode)	5.0 - 200.0 keV
on-axis peak brilliance at 29.9 keV (wiggler mode at minimum gap = 18.1 mm)	$1.1 \times 10^{\text{T}}$ ph/sec/mrad4/mm4/0.1%bw
on-axis peak angular flux at 29.9 keV (wiggler mode at minimum gap = 18.1 mm)	5.4 x 10 ¹⁵ ph/sec/mrad ² /0.1%bw
source size at critical energy $\sum_{x} \sum_{y}$	$359~\mu\mathrm{m}$ $21~\mu\mathrm{m}$
source divergence at critical	
$\begin{array}{l} \text{energy} \\ \sum_{x'} \text{(FWHM 1.2 mrad, non-Gaussian)} \\ \sum_{y'} \end{array}$	$510~\mu\mathrm{rad}$ $47~\mu\mathrm{rad}$

source 2	Undulator A
period	3.30 cm
length	2.47 m
effective K_{mx} (at minimum gap = 10.5 mm)	2.78
energy range 1st harmonic	2.9 - 13.0 keV
energy range 1st - 5th harmonics	2.9 - 45.0 keV
on-axis peak brilliance at 6.5 keV	9.6 x 10 ¹⁸ ph/sec/mrad ² /mm ² /0.1% bw
source size at 8.0 keV $\sum_{y}^{x} \sum_{y}^{x}$	$359~\mu\mathrm{m}$ $21~\mu\mathrm{m}$
source divergence at 8.0 keV $\sum_{x'}_{y'}$	$24~\mu\mathrm{rad}$ $6.9~\mu\mathrm{rad}$